The EverLearner

Model Answers

OCR A-Level PE – Biomechanics (Revision session on Tuesday 10th May 2022, 4.00-5.30pm)

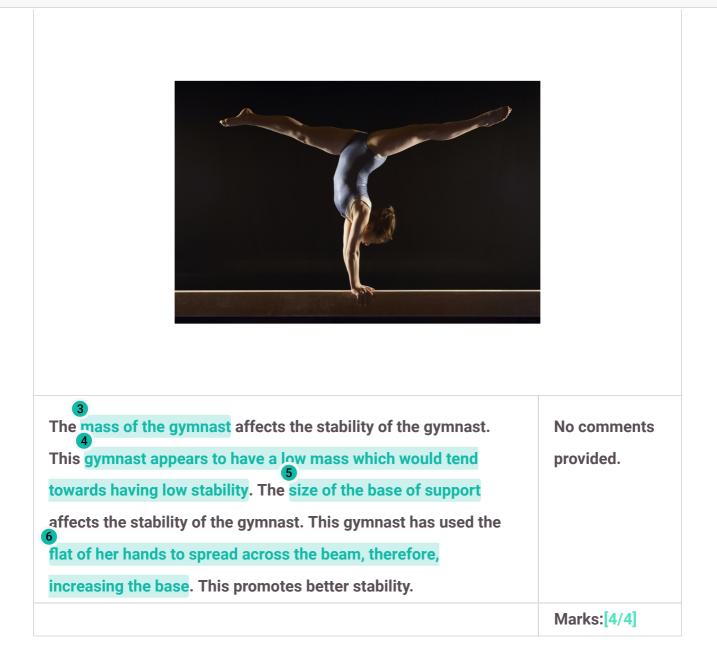
This document contains:

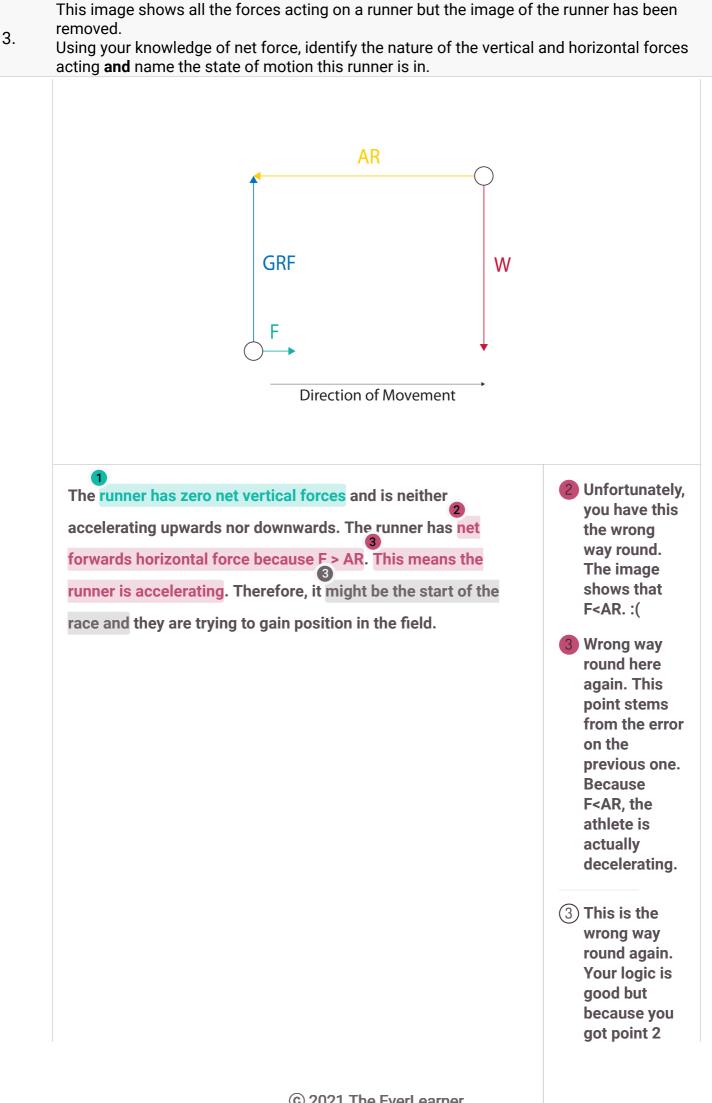
- Model answers for the Practice Questions answered during the 2022 Revision series
- Questions in AEI order
- Where possible, examples of extended writing
- No one-mark or multiple-choice questions

How should schools use these papers?

This paper has been constructed specifically for use in preparation for and during the live revision shows provided by James Simms in May 2022. I encourage students to attempt the questions in advance of the revision shows.

Please, use these model answers in combination with the mark scheme and the revision session, available in the <u>OCR A-Level PE Revision page</u> (https://pages.theeverlearner.com/2022-ocr-a-level-pe-revision).

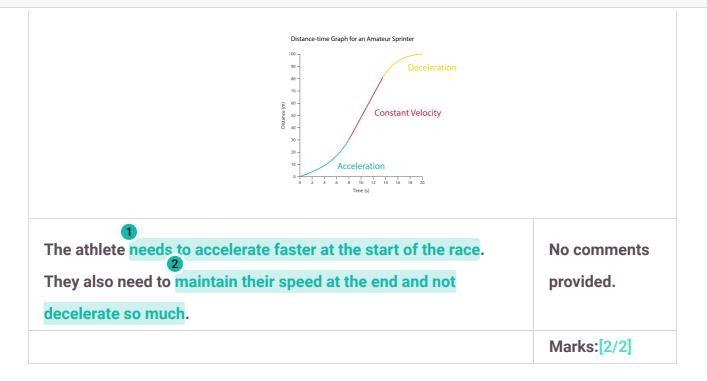

All questions are taken from ExamSimulator. Please note, there are hundreds of additional questions on ExamSimulator covering the AEI topics. ExamSimulator is a premium resource available via TheEverLearner.com.


I hope this helps both students and teachers in their exam preparations.

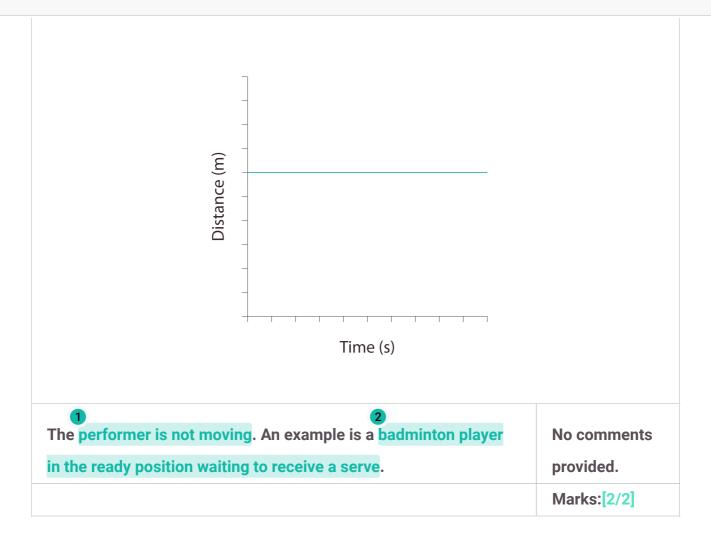
James Simms

1. Define Newton's first law of motion **and** apply it to a sporting example of your choice.

Newton s first law states that a body will remain in a state of	No comments
inertia until compelled to change by an external force. The	provided.
sprinter in the image has already overcome their inertia in the	
sprint start position on the block by pushing against the block	
and creating an external force. Newton s second law states that a	
body will accelerate proportionally to the force acting on it and	
will do so in the direction of that force. The sprinter is	
accelerating at a rate proportional to reaction force and doing so	
in a forwards and upwards direction because this is the direction	
of the reaction force.	
	Marks:[3/3]


3.	This image shows all the forces acting on a runner but the image of t removed. Using your knowledge of net force, identify the nature of the vertical a acting and name the state of motion this runner is in.	
		wrong, this application is wrong. This
		image Marks:[1/3] actually
		shows an

shows an example such as a 400m runner in the home stretch decelerating. All sporting objects will be affected by either balanced or unbalanced forces. Explain balanced and unbalanced forces, giving a sporting example for each.

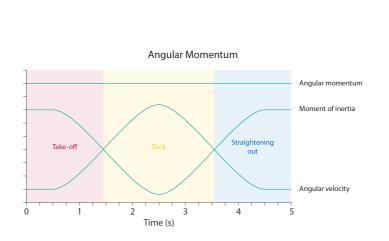

 Balanced forces are when two or more forces equal in size but opposite in direction. An example is the initial shove of a rugby scrum where no forwards or backwards acceleration occur. There is a zero net force acting. 	(3) We needed reference to unbalanced forces here for marks three and four. You have not addressed unbalanced forces in your answer.
	Marks:[2/4]

A 100m coach has been employed.

Use this graph to suggest two weaknesses in the athlete's performance.

6. Analyse what is occuring in the graph and suggest a suitable sporting example where this would occur.

7. The three principal axes of rotation are longtitudinal, frontal and transverse. Suggest a suitable sporting movement for each of these three axes.


1 3 Longitudinal is a pivot in netball. Frontal is a diving goalkeepers	No comments
save to the side. Transverse is a back somersault on a	provided.
trampoline.	
	Marks:[3/3]

8. Define the term **angular velocity**, state the correct equation and give the suitable unit it is measured in.

Angular velocity is the rate of change of angular displacement. Angular displacement/time taken. Radians per second.	No comments provided.
	Marks:[3/3]

The graph shows the relationship between moment of inertia, angular velocity and angular momentum for a diver performing a tuck forward somersault.

Analyse the graph, explaining the relationship between these three measurements throughout the entire movement.

At the point of take off, the diver spreads their mass, increasing	No comments
tier moment of inertia so that angular velocity is low but the	provided.
greatest potential angular momentum is established. During the	
tuck, body weight is brought close to the transverse axis of at the	
hip which decreases moment of inertia and increases angular	
velocity so that the diver rotates quickly. During the straightening	
out phase, the diver increases moment of inertia thereby	
decreasing angular velocity proportionally and the entry to the	
water is controlled. Angular momentum remains constant in the	
air due to the law of conservation of angular momentum.	
	Marks:[6/6]

Feedback:

9.

No feedback provided.