The EverLearner

Model Answers

AQA A-Level PE – Biomechanics (Revision session on Wednesday 18th May 2022, 4.00–5.30pm)

This document contains:

- Model answers for the Practice Questions answered during the 2022 Revision series
- Questions in AEI order
- Where possible, examples of extended writing
- No one-mark or multiple-choice questions

How should schools use these papers?

This paper has been constructed specifically for use in preparation for and during the live revision shows provided by James Simms in May 2022. I encourage students to attempt the questions in advance of the revision shows.

Please, use these model answers in combination with the mark scheme and the revision session, available in the AQA A-Level PE Revision page (https://pages.theeverlearner.com/2022-aqa-a-level-pe-revision).

All questions are taken from ExamSimulator. Please note, there are hundreds of additional questions on ExamSimulator covering the AEI topics. ExamSimulator is a premium resource available via TheEverLearner.com.

I hope this helps both students and teachers in their exam preparations.

James Simms

1. This image shows three different projectiles from field athletics. Describe the optimal release angle for all three projectiles.

	Long jump	
	High jump	
	Javelin	
1 Long jump is the same release and landing height and requires		No comments
45 degrees. High jump has a higher landing height than release		provided.
height and requires > 45 degrees. Javelin has a lower landing		
height than release height and requires < 45 degrees.		
		Marks:[6/6]

Evaluate the factors affecting the horizontal displacement of both a shot-put and a shuttlecock in flight.

1	
Horizontal displacement is the shortest distance between the	No comments
release height and the landing point. This is affected by the	provided.
height, angle and velocity of release. The greater the release	
height, the greater the horizontal displacement. The greater the	
release velocity, the greater the release velocity, the greater the	
horizontal displacement. The flight path of the shot is parabolic	
because the weight force is dominant and air resistance is low	
due to the release velocity being low. The release height is above	
the landing height so the optimal angle is < 45 degrees. To	
increase release velocity, the putter moves across the circle and	
applies maximal force to the shot. The putter also needs to	
release at the highest point possible but must do so within losing	
release velocity. The shuttlecock has an asymmetrical flight path	
as the air resistance is very high based on the very fast release	
velocity. This means the shuttlecock decelerates in the air. The	
shuttlecock, depending on the type of shot, will typically by hit	
with a release angle of < 45 degrees as the landing height is	
below the release height and the player will try to strike from the	
highest point possible including jumping to reach higher where	
possible. If the badminton player hits with maximum force, the	
shuttle is likely to got out at the back of the court so the player	
must moderate this as required depending on their own start	
position.	
	Marks:[15/15]

3. Explain how designers of F1 cars ensure the cars can travel quickly around sharp corners by applying the principles of fluid mechanics.

1 The car is shaped like an inverted aerofoil so that air travels	7 Excellent
further under the car than over. This means the air above the car	of point 7.
travels less distance and can travel slower than the air below. Air	:)
above the car, according to Bernoulli s principle is, therefore, at	
higher pressure than the air below and this creates a pressure	
differential and a Bernoulli lift force downward. This increases	
the friction between the tyres and the track and the car can turn	
sharp corners at higher speeds without slipping.	
	Marks:[5/5]

Feedback:

No feedback provided.

© 2021 The EverLearner